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Abstract

What is music. . . if not, at the end of the day, an accessible, fun and expressive way
to engage with mathematics and language? Oumupo (Ouvroir de Musique Potentielle, a
Workshop for Potential Music) is a group where musicians and theorists can explore this open
question through different exercises and experiments.

A potential history of potential creation

In 1960, François Le Lionnais and Raymond Queneau founded a collective comprised of writers
and mathematicians, whose singular objective was to reinvigorate literary forms. This collective,
called Oulipo (Ouvroir de Littérature Potentielle, or Workshop for Potential Literature), has been
the source of audacious and thought-provoking works such as Queneau’s Hundred Thousand Billion

Poems (1961) and Perec’s A Void (1969); it continues to exist today, and has been supplemented
for the past two decades with a separate, though perhaps equally interesting, online community:
the Oulipo mailing list.

From Oulipo’s very inception, François Le Lionnais also imagined extending the scope of its
approach to various other disciplines. In this spirit, he founded several other Ouxpo workshops:
Oupeinpo (as in ‘Potential Painting’), Oumathpo, Oucinépo. . . Music was very much included in
Le Lionnais’ scope, and several Oumupo groups did coexist (in a rather informal way) over the next
few decades. It was not until 2011, however, that an actual, established Ouvroir de Musique

Potentielle did take place; while still resolutely part of this tradition, it remains an active and
constantly evolving group.

Ouxpo groups are concerned with inventing new structures and forms: their experiments may
however vary in scale, from macroscopic structural constraints to a more minute level where they
may be led to reinvent the very language through which their art is expressed. For example, a
writer that forbids the use of certain letters or patterns of letters is then forced to express herself
within a restricted subset of the normally-available lexicon, thereby needing to resort to unknown
words, unknown or archaic formulations that may surprise the reader. The words take on a quality
in and of themselves as signifiers in addition to, or even before, being understood as signified.

In this sense, Oumupo is not only brought to reevaluate purely musical constructs (harmony,
rhythm, melody, timbre) but also to draw parallels between these devices and other areas of study:
texts or words, graphic arts, but also mathematical objects — automata, geometry, and numbers.
As it happens, music often is an excellent and accessible way to wrap one’s head around abstract
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notions or challenging mathematical problems — and in a reciprocal manner, mathematics may be
a constant source of inspiration in the elaboration of new musical processes. The next sections aim
to cursorily introduce a few of these avenues.1

Ouxpian games and inventions

As early as 1962, Le Lionnais laid out some useful ground rules in a text later known as the First

Oulipo Manifesto, detailing the group’s orientation and modus operandi2. Interestingly, he made
the point that Oulipo was not a literary movement, nor had it any intention of turning into one
— in fact, the very notion of “inspiration” (and with it any sense of ethereal poetry, randomness
or surrealist-like dream associations) was repeatedly rejected. In its place, Oulipo members were
aiming to conceive a seemingly-scientific method from the ground up (remotely inspired by the
Bourbaki group that, at the time, was in full trend in the French mathematical field), deriving
new “potential” structures and constraints from existing works (even going as far back as classical
antiquity and medieval literature), as well as from not-yet-existing works.

Interweaving the study of past artistic works with the creation of entirely new material (the
“analytical” and the “synthetical” approach) remains one of Oulipo’s most decisive choices — one
that resonated with both artistic audacity (the group co-opted Marcel Duchamp as one of its very
first corresponding members, which he gladly accepted) and the modernity of a society yet to come:
it would be decades before “remix” even became a word.

This two-pronged approach (dubbed respectively “anoulipism” and “synthoulipism”) is still
found today in every Ouxpo group in existence; it has grown much richer precisely due to the
increased diversity in “potential” disciplines and languages. For example, the pictée (“pictation”),
a game originally proposed by Oupeinpo and therefore relevant only to graphical expression (the
game consists of describing an existing artwork to somebody who then produces a new drawing
based only on the given clues), was adapted by Oulipo as the textée (“textation”), and more recently
by Oumupo as the chansonnée (“singtation”), where it becomes even more amusing since one has
to account for both the lyrics and the music.

Many literary forms can be straightforwardly transposed to the musical realm. A foremost
example is the palindrome: as a literary (and possibly religious) practice, it dates back at least to
ancient Rome, but it was applied to music at least as early as the 14th century – as a matter of
fact, collecting and reviewing existing examples of musical palindromes and anacycli (as well as
writing new ones) has been one of the tasks that Oumupo member Valentin Villenave has set out
to accomplish.

Not all literary constraints are as easily converted into musical exercises. At least as old (if
not older) as the palindrome, is the well-known “lipogram”: a text written without using one
or more letters of the given alphabet. The obvious musical equivalent would be the “liponote”,
whereby one is prevented from using a specific pitch (or a degree of the scale) — preferably one
of the most essential, in the same way that there is not much point to a lipogram in X or Z. But
unlike the lipogram, the liponote quickly proves to be of limited interest. Not only does it hardly
make sense in atonal music, but even in classical music one can write around the missing pitch

1Some of these examples have been presented in the French popular science magazine Maths Langages Express,
intended for a large public audience (CIJM, 2017).

2Oulipo has had three consecutive manifestos, the first two of which are included in a 1973 book signed collectively
(Oulipo, 1973); the third one was drafted during the 1970s but only published much more recently, nearly half a
century after the group’s foundation (Oulipo, 2009).
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through modulations, substitutions and ornaments. This led Valentin Villenave to suggest another
Oumupian exercise: the “lipoval”, where a specific interval is banned, both between simultaneous
and consecutive notes (even accounting for added notes in-between). Depending on its scope (which
can be of any length, from a single bar to the whole piece), this constraint may become more
challenging (and, much like the lipogram, may remain unnoticed by both performers and listeners).

The conquest of Niagara: a radical approach to sound com-

pression!

A peculiar example of “anoumupism” (the musical equivalent of “anoulipism” as explained above)
has been proposed by one of our contributors, Martin Granger, with regard to a problem of the
utmost importance in the digital age — namely, music compression.

The entire history of musical compression can be summed up in a single phrase: putting as
much information as possible into the smallest space possible. But why on Earth would anyone
want to fill a hard drive with ten years of music? No one in their right minds, nowadays, would
ever spend ten years of her life actually listening to the stuff? What an outrageously futile (not
to mention, financially unrewarding) activity! Therefore, the time has come to provide the modern
citizen with innovative compression solutions that actually correspond to people’s needs. To name
but a few of these:

• The acceleration of recorded music is a compression method as old as the record itself.
In playing a 33 rotations-per-minute record at a speed of 45 RPM, one achieves a time
reduction of 36% (an acceleration of 136% is even possible at 78 RPM). Of course, analog
time-compression pushes the original frequencies higher, thereby causing the music to be
transposed. Which is why only certain pieces lend themselves to this treatment — for example,
“interesting” results are obtained with Erik Satie’s third Gymnopédie, entitled slow and grave.

• The removal of redundant patterns is a very efficient method, that does not induce any
loss of information. Indeed, many composers (undoubtedly out of complacency or sheer lazi-
ness) routinely engage in self-plagiarism and shamelessly re-use entire fragments already writ-
ten: repeat signs, repeated measures, ostinato patterns. . . Removing all of these is straight-
forward enough. Take, for instance, the famous first prelude (BWV 846) in C major in
J.S. Bach’s Well-Tempered Clavier (see figure 1). Every bar is made of two identical 8-note
patterns, of which the last three notes are actually played twice. An efficient algorithm would
first remove one half of each measure, then the last three notes of the remainder. We are left
with only 5 notes per measure instead of 16 notes, thus amounting to a 69% temporal gain!

Before

After

Figure 1: J.S. Bach finally streamlined and enhanced for optimal efficiency: a long-overdue revamping, courtesy of
Oumupo!
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• The more difficult method of superposition requires searching similar passages in one or sev-
eral works and playing them simultaneously. An interesting research subject is the “rhythm
changes” (nicknamed anatole in French), the chord progression underlying many jazz stan-
dards and popular music. By superposing all of the works constructed using this sequence,
one could gain quite a lot of time!

• Last but not least, random superposition allows for extremely efficient temporal gains,
at the price of dramatically reducing the music’s signal-to-noise ratio. For example, Heinrich
Ignaz Franz von Biber’s La Battalia a 10 (1673) superposes eight popular melodies in different
tonalities and tempos to evoke the theme of drunken soldiers. That 8/1 compression rate
allows for an 87.5% reduction in time. In a similar vein, Folk Music by Zygmunt Krause
(1972) offers a superposition of twenty folk melodies — a whopping 95%!

Pushed to its extreme, this logic would allow one to listen to all possible music at the same
time. Also known as “white noise,” this is compression at its limit, as the quantity of musical
information tends towards zero.

In other words, let us be proactive for once, and skip directly to the ultimate compression: the
inevitable day where listening to music will be indistinguishable from hearing the sound of Niagara
Falls.

Coding and counting

Given the number of mathematicians that were (and still are) involved with Oulipo, one can but
wonder why its sister group Oumupo did not take off immediately when a few informal meetings took
place between François Le Lionnais, Michel Philippot, Pierre Barbaud and a few others in the early
1970s. Indeed, music is, in and of itself, a mathematical language, as Leibniz famously posited
in his 1712 letter to a young Goldbach: Musica est exercitium arithmeticæ occultum nescientis

se numerare animi (“music is a hidden exercise in arithmetics, where the mind is unaware it is
counting”).

Any musician can attest how ubiquitous numbers are in the musical field, in many different
forms. To demonstrate their versatility, one may translate a given numerical sequence through
various methods; in figures 2 to 10, we will be using the first decimals of the number π as a
example.

• Rhythms, which include the duration of notes and rests, but as well the number of repetitions
of a note or a group of notes (figure 2). This even extends to the quantity of events within a
single structural unit (for example, the number of notes in a measure, figure 3).
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Figure 2: π’s first decimals in base 10 (3.141592653589) as rhythmic patterns of various lengths. . .
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Figure 3: . . . And as quantities of events per measure, with variable speeds.

• Absolute pitch, as the degrees of the diatonic scale (figure 4), that are often numbered with
Roman Numerals or designated with letters of the alphabet. Since the 20th century, it is even
possible to designate a pitch by its periodic frequency in hertz.
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Figure 4: π’s first decimals expressed through scale degrees. The zero is rendered by a rest.

• Relative pitch, or the interval between a pitch and another one, played either in a sequential
or simultaneous manner. By counting the number of semitones between two notes, it is
possible to establish detailed metrics of chords and harmonies (figure 5), although base 10
may not be the most appropriate system here, as we will see. In a similar line of thought, the
Tonnetz (described in a later section) is an original and interesting tool.
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Figure 5: π’s first decimals used as cumulative intervals between notes.

In many cases, expressing a number or a mathematical operation through musical elements requires
to first find the most appropriate numeral base. While we are used to manipulating numbers in
a base 10 scheme, musical organization tends to be conceived in entirely different ways.

• Beats and measures are often counted in units that are 2x, leading to a measurement system
in base 4 (the four-bar “hypermeasure” that is the bread-and-butter of European Common
Practice musical bar structure) or base 8 (the “count to eight” more common for dancers).
At a lower level, sixteenth notes are prevalent in many Western musical traditions: figure 6
is an attempt to express the number π in a manner more suitable to such musicians.
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Figure 6: The first digits of π’s expansion in base 4 (3.021003331222202020), expressed through pure rhythm.
Patterns now occur in a way that becomes much easier to identify by ear.

• The diatonic scale, an omnipresent seven-note construct in many different musical traditions
(to begin with the Western one), would therefore require to count in base 7. Pentatonic scales,
which comprise five notes, are found in many Eastern cultures: figure 7 is generated again
from the number π, in base 5.
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Figure 7: The first digits of π’s expansion in base 5 (3.032322143033432411), played along a pentatonic scale. The
specific color of this scale adds to the fascinating, hypnotic effect of the repetitive counting pattern.

• The chromatic scale, used since the time of Pythagorean theorists, requires the partitioning
of a musical octave in a twelve-semitone scale. Today, this scale is a strict geometric series
(where each note is incremented by a factor of 21/12), at the basis of the traditional 12 equal
temperament system (henceforth 12-ET system).
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Figure 8: The first digits of π’s expansion in base 12 (3.184809493B918664573A6211BB151551A05729290A780). . .

While the ubiquity of 12-ET makes base 12 an obvious choice for turning numbers into notes, it is
nevertheless possible to cheat through various means of musical cunning. For example, a ten-note
set can be derived from the twelve-note space by omitting two notes from the chromatic collection,
i.e., by removing them altogether, or by making them into pedal or drone tones. Compare, for
example, figures 8 and 9 where the number π is expressed in proper base 12 and in base 10; the
harmonic language becomes perceptibly poorer, but remains musically interesting.
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Figure 9: . . . And back to base 10, but with a twist: a second voice provides the two pitches missing from the total
chromatic space.

Different numeral bases may be also be combined: for example, an integer sequence in base 10
may provide intervals between notes as seen above (figure 5), while another sequence in base 2
will determine, for each of these notes, whether the melody must go up or down — and other
sequences in other bases may even be used at the same time, for example to determine durations
and dynamics). Thus, music may be generated procedurally while remaining diverse and surprising.

Furthermore, other numeral bases may be of interest to musicians: for example, when using
microtonal resources (translating hexadecimal numbers into 16-ET pitches, and so on), or specific
modal scales that are not octave-bound. Even simpler, the binary base remains an useful engine to
switch between two possible choices (for example between “up” and “down” as mentioned above,
or between major and minor triads, as illustrated in figure 11). Lesser-known is the phinary base
3 (built upon the ϕ “golden ratio” number), which allows for a very surprising syntax — where,
for example, “11” may be rewritten as “100” — that is prone to generate some exciting rhythmic
structures.

�� ������� � ��� ������� ��� ������ ����� � �� ��� �� ���� �� ��
Figure 10: The first “phigits” of π’s expansion in the golden base
(100.010010101001000101010100000101001000010010100). Unlike base 2, this expansion is not evenly distributed
between zeroes and ones, which makes performing it as a rhythm more dynamic and captivating.

Translating words into pitches has also been challenging for many centuries; where many com-
posers opted to use only letters from A to G (and H in German, which is evidently convenient
when B-A-C-H is involved), some astute tricks had to be found (for example translating S into Es,
meaning “E flat”). Others opted to simply cycle through the diatonic scale, thus reducing each
additional letter to its modulo. Which is why, when several French composers wrote musical trib-
utes to Haydn in 1908, the letters Y and D had to be played as a repeated note (a choice bitterly
disputed by Saint-Saens who, alongside with Fauré, refused to have any part in it for that very
reason). As a matter of fact, we have yet to find a definite, practical way of translating the whole
alphabet into distinct pitches.

3This base was first described by George Bergman at a very young age: he was fourteen when his paper was
published (Bergman, 1957), but is said to have written it two years earlier.
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Figure 11: A wholly impractical way of turning words into notes: letters are encoded in UTF-8, then expressed in
binary and converted into minor and major triads!

Combinatorial procedures

Combinatorial composition has always been an essential part of Ouxpo activity — in an article
included in La Littérature Potentielle (Oulipo, 1973), French mathematician and Oulipo member
Claude Berge starts by referring to both Leibniz’s De Arte Combinatoria (1666), and Euler’s Briefe
an eine deutsche Prinzessin (1769). Another Oulipo member with a specific interest in system-
atic combinations was Raymond Queneau, who turned the medieval sextine’s permutation scheme
(based on a set of 6-verse stanzas) into a much more complete and rational tool, opening the way to
an entire field of new poetic forms: terine, quatrine, and ultimately, quenines and pseudo-quenines

of any order.
Such procedures are gladly used by Oumupo, even more happily so since music provides us

with ways of taking advantage of these schemes as two-dimensional matrices. Another, more recent
example of an interesting combinatorial game is the Eodermdrome, a recombination of a 5-element
set using specific paths through a non-planar graph. This was initially described by G. Bloom,
J. Kennedy and P. Wexler in 1980, then introduced in France by Oulipo member Jacques Roubaud,
and expanded upon by the Oulipo list, which in turn brought it to our attention.

Music, compared to literature, is combinatorially agnostic: the constraint of meaning attributed
to words that make certain literary combinations valid and others not, tends to lose its relevance
in music. For example, the word note can have its letters reorganized into tone, or the proper noun
Eton, whereas neto (a Spanish word) is not in the English lexicon, and eotn does not appear to be a
word in any language. Musical notes, on the other hand, can be combined in any order and carry a
subjective argument in musical time. Therefore, we Oumupo composers are often prone to present
every possible result of a given musical set (an example of which may be seen in figure 12), rather
than having to make arbitrary choices based on whether we like some results more than others.
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Figure 12: Combinatorics at its most extreme: Tom Johnson’s Chord Catalog for keyboard (1985) is performed by
sequentially playing all of the 8178 chords possible within one octave.
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Several classic mathematical tools can be used to articulate music’s combinatorial potential:
magic squares, symmetry, Pascal’s triangle, the sieve of Eratosthenes, prime numbers, and many
others. Stochastic processes may also be of use, although the strictest Ouxpo line of thought tends
not to be interested in pure randomness; what follows is an example toeing the line of our field of
study.

Attractors

Attractors are a tool used by composers looking for music that contains qualities of both structure
and chaos.

One interesting example of attractors in music comes from the Moscow-based composer Sergei
Zagny (born in 1960), whose electronic composition Formula 1 (Zagny, 2000) is based on mathe-
matical equations elaborated by the Belgian mathematician Pierre-François Verhulst (1804-1849).
In 1845, Verhulst described a possible model for animal population growth through an equation
that came to be known as the “logistic map” (Verhulst, 1845): a variable x (which must always stay
between 0 and 1) is recursively multiplied by (1 − x) and then by a factor a (that can be defined
between 0 and 4). The resulting curve (illustrated as a bifurcation diagram in figure 13) has both
chaotic and fractal properties, which makes it particularly interesting for musical purposes.

Figure 13: Bifurcation diagram for Verhulst’s “logistic map”.

Using different initial values for a, we can observe the following iterative results, as detailed in
figures 14 to 16.
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a = 2 . 6 ; x = 0 . 5 ; c t = 0 ;
While [ c t <= 30 , ct++; x = N[ a∗x∗(1 − x ) ] ;
Print [ ct , ” ” , x ] ]

0 .652 0.59153 0.6282324 0.6072475 0.6200956 0.6125017
0.6170938 0.6143529 0.61600210 0.61501311 0.61560712 0.61525113
0.61546514 0.61533715 0.61541316 0.61536717 0.61539518 0.61537819
0.61538820 0.61538221 0.61538622 0.61538423 0.61538524 0.61538425
0.61538526 0.61538527 0.61538528 0.61538529 0.61538530 0.61538531
0.615385 . . .

Figure 14: with a = 2.6 and x = 0.5 as a starting point, x becomes 0.65 then 0.59, 0.62, 0.61 etc. until it stabilizes
at 0.615385.

a = 3 .56994 ; x = 0 . 5 ; c t = 0 ;
While [ c t <= 30 , ct++; x = N[ a∗x∗(1 − x ) ] ;
Print [ ct , ” ” , x ] ]

0 .8924852 0.3425553 0.8039914 0.5625865 0.8785026 0.3810437
0.8419688 0.4750099 0.89025510 0.34878611 0.81085612 0.54751813
0.88442414 0.36491215 0.82733816 0.50996617 0.8921318 0.34354919
0.80510320 0.56016621 0.87956222 0.37817323 0.83950124 0.48101125
0.89119826 0.34615727 0.80799328 0.55384229 0.88213630 0.37117431
0.833238 . . .

Figure 15: a = 3.56994, which is one of Feigenbaum’s constants. The result is much more chaotic. In spite of the
large differences between later smaller significant figures, the system audibly alternates between two poles — one
close to 0.8 and the other close to 0.5. The attractor thus becomes seemingly periodic.

a = 3 . 7 4 5 ; x = 0 . 5 ; c t = 0 ;
While [ c t <= 100 , ct++; x = N[ a∗x∗(1 − x ) ] ;
Print [ ct , ” ” , x ] ]

0 .936252 0.2235243 0.6499864 0.8520045 0.472226 0.933367
0.2329368 0.6691459 0.82910610 0.53062711 0.93273712 0.23495613
0.6731714 0.82394615 0.54324616 0.92924617 0.24622518 0.69506619
0.7937520 0.61309721 0.88834822 0.37145123 0.87436424 0.41139425
0.90684826 0.31635927 0.80995328 0.57646429 0.91435430 0.29327331
0.77620432 0.65054933 0.8513734 0.47388935 0.93369736 0.23184237
0.66695238 0.83186539 0.52379640 0.93412941 0.23043642 0.66412143
0.83537644 0.51502445 0.93540546 0.22628347 0.65567148 0.84549549
0.4892250 0.93581551 0.22494552 0.65292153 0.84867454 0.48095855
0.93489256 0.22795457 0.65908658 0.8414759 0.49957660 0.93624961
0.22352662 0.6499963 0.85199864 0.47223465 0.93336366 0.23292767
0.66912668 0.82912969 0.5305770 0.9327571 0.23491372 0.67308573
0.82405574 0.54298175 0.92933276 0.2459577 0.69454378 0.79451379
0.61141780 0.8897681 0.36733582 0.87033883 0.42262184 0.91382785
0.29490886 0.77872687 0.64530888 0.85717689 0.45848390 0.92979591
0.2444692 0.69169993 0.79862694 0.6022895 0.89707396 0.34578797
0.84718898 0.4848399 0.935388100 0.226337101 0.655782 . . .

Figure 16: a = 3, 745. After a few iterations, we reach the “period five window”, where the attractor loops around
five values that begin respectively with 0,8, 0,5, 0,9, 0,2 and 0,6. This configuration is less stable and the numbers
obtained are completely dispersed. Nevertheless, if one listens to the result in time, one can hear an emergent logic in
a random alteration between five distinct values. In this way, music may reveal more clearly what a purely numerical
system often obfuscates (graphical representations also are an efficient tool in this regard, as illustrated in figure 13).
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Although not a member of Oumupo, Zagny demonstrates a relevant approach to automated
composition, where controlled chaos remains both ordered and reproducible. Thus, attractors
illustrate an underlying thema through most of our own musical research, as elaborated below: the
tense equilibrium between unpredictability and determinism.

Tracing paths through the Tonnetz

The Tonnetz (tone-network) is a geometrical structure originally introduced by the Swiss mathe-
matician Leonhard Euler (1707-1783). First in 1739, then in his 1774 treaty De harmoniæ veris

principiis per speculum musicum repræsentatis (“On the actual principles of harmony as represented
in a musical mirror”)4, Euler introduces a representation of musical pitch in a two-dimensional space
(see figure 17, left). The space’s two axes are the perfect fifth and the major third. After the octave,
these are the two most “consonant” intervals, meaning that their relation can be expressed with
low integer ratios (respectively 3:2 for the perfect fifth and 5:4 for the major third).

The modern version of the Tonnetz , more commonly used in contemporary musical discourse
(see figure 17, right), makes use of these two axes and adds a minor third axis so that the two-
dimensional plane is now divided into triangles. By construction, one side of every triangle always is
a perfect fifth, so that all triangles correspond to major and minor triadic chords. Moving outward
from the barycenter of the triangle (corresponding, for example, to C-E-G), one notices three major
axes of symmetry that allow for paths through the Tonnetz that are achieved by changing one of
the three chordal notes by one semitone or one whole tone at most.

• The relative chord (R) — C-E-A in the above example.

• The parallel chord (P) — C-E♭-G.

• The leading-tone chord (L) — B-E-G.

An interesting consequence of this partitioning is that major chords only ever lead to minor chords
and, inversely, minor chords only ever lead to major chords.

4A comprehensive list of Euler’s work may be found on the Euler Archive’s website; see bibliography.
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Figure 17: Symmetries in the Tonnetz : three transformations of a B major triad (B-D♯-F♯, or H-Ds-Fs in German),
in Euler’s representation (left) and in the model preferred nowadays (right).

From this triangulation of the musical plane, one can derive its dual graph: a hexagonal tiling
(not unlike a bee’s nest) where every note finds itself at the center of a hexagon surrounded by
six summits — the six notes with which it can form a major or minor chord. By means of the
three operators R, P, and L, all of which preserve two out of three notes in a three-note chord and
change the moving note by no more than a whole tone, one can navigate through the lattice to
create harmonic progressions that only require minimal voice-leading (Andreatta, 2016).

Of the many different paths that can be traced through the Tonnetz, some have particularly
interesting qualities. For example, from any given chordal point on a hexagon in the Tonnetz, it is
possible to create a path that exhausts all twenty-four major and minor chords without repetition.
We call this path a Hamiltonian traversal — the word Hamiltonian coming from an analogous
operation in graph theory. If a path is cyclic, one calls it a “Hamiltonian cycle.” An exhaustive
research has shown that there are 124 of these Hamiltonian cycles through the Tonnetz, that can
be classified according to their internal symmetries. There are, for example, cycles that zig-zag
because they are comprised of only two elemental symmetries (for example, alternating L and R

operations). Other cycles traverse the 24 major and minor chords without internal symmetries, i.e.,
without any recurring sub-pattern. Figure 18 inventories the 28 Hamiltonian cycles in the Tonnetz

having an internal periodicity. We find here, in positions 16 and 28, two zig-zag configurations that
allows one to visit every possible minor and major chord once and once only (the first solution
actually being a retrogradation of the second one, and conversely).
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1. C-Cm-A♭-A♭m-E-C♯m-A-Am-F-Fm-C♯-B♭m-F♯-F♯m-D-Dm-B♭-Gm-E♭-E♭m-B-Bm-G-Em −→ PLPLRL

2. C-Cm-A♭-Fm-C♯-C♯m-A-Am-F-Dm-B♭-B♭m-F♯-F♯m-D-Bm-G-Gm-E♭-E♭m-B-A♭m-E-Em −→ PLRLPL

3. C-Cm-E♭-E♭m-F♯-F♯m-A-C♯m-E-Em-G-Gm-B♭-B♭m-C♯-Fm-A♭-A♭m-B-Bm-D-Dm-F-Am −→ PRPRPRLR

4. C-Cm-E♭-E♭m-F♯-B♭m-C♯-C♯m-E-Em-G-Gm-B♭-Dm-F-Fm-A♭-A♭m-B-Bm-D-F♯m-A-Am −→ PRPRLRPR

5. C-Cm-E♭-E♭m-F♯-B♭m-C♯-Fm-A♭-A♭m-B-Bm-D-F♯m-A-C♯m-E-Em-G-Gm-B♭-Dm-F-Am −→ PRPRLRLR

6. C-Cm-E♭-Gm-B♭-B♭m-C♯-C♯m-E-Em-G-Bm-D-Dm-F-Fm-A♭-A♭m-B-E♭m-F♯-F♯m-A-Am −→ PRLRPRPR

7. C-Cm-E♭-Gm-B♭-B♭m-C♯-Fm-A♭-A♭m-B-E♭m-F♯-F♯m-A-C♯m-E-Em-G-Bm-D-Dm-F-Am −→ PRLR

8. C-Cm-E♭-Gm-B♭-Dm-F-Fm-A♭-A♭m-B-E♭m-F♯-B♭m-C♯-C♯m-E-Em-G-Bm-D-F♯m-A-Am −→ PRLRLRPR

9. C-Em-E-A♭m-A♭-Cm-E♭-Gm-G-Bm-B-E♭m-F♯-B♭m-B♭-Dm-D-F♯m-A-C♯m-C♯-Fm-F-Am −→ LPLPLR

10. C-Em-E-A♭m-B-E♭m-E♭-Gm-G-Bm-D-F♯m-F♯-B♭m-B♭-Dm-F-Am-A-C♯m-C♯-Fm-A♭-Cm −→ LPLRLP

11. C-Em-G-Gm-B♭-B♭m-C♯-C♯m-E-A♭m-B-Bm-D-Dm-F-Fm-A♭-Cm-E♭-E♭m-F♯-F♯m-A-Am −→ LRPRPRPR

12. C-Em-G-Gm-B♭-B♭m-C♯-Fm-A♭-Cm-E♭-E♭m-F♯-F♯m-A-C♯m-E-A♭m-B-Bm-D-Dm-F-Am −→ LRPRPRLR

13. C-Em-G-Gm-B♭-Dm-F-Fm-A♭-Cm-E♭-E♭m-F♯-B♭m-C♯-C♯m-E-A♭m-B-Bm-D-F♯m-A-Am −→ LRPR

14. C-Em-G-Bm-B-E♭m-E♭-Gm-B♭-Dm-D-F♯m-F♯-B♭m-C♯-Fm-F-Am-A-C♯m-E-A♭m-A♭-Cm −→ LRLPLP

15. C-Em-G-Bm-D-Dm-F-Fm-A♭-Cm-E♭-Gm-B♭-B♭m-C♯-C♯m-E-A♭m-B-E♭m-F♯-F♯m-A-Am −→ LRLRPRPR

16. C-Em-G-Bm-D-F♯m-A-C♯m-E-A♭m-B-E♭m-F♯-B♭m-C♯-Fm-A♭-Cm-E♭-Gm-B♭-Dm-F-Am −→ LR

17. C-Am-A-F♯m-F♯-E♭m-E♭-Cm-A♭-Fm-F-Dm-D-Bm-B-A♭m-E-C♯m-C♯-B♭m-B♭-Gm-G-Em −→ RPRPRPRL

18. C-Am-A-F♯m-F♯-E♭m-B-A♭m-A♭-Fm-F-Dm-D-Bm-G-Em-E-C♯m-C♯-B♭m-B♭-Gm-E♭-Cm −→ RPRPRLRP

19. C-Am-A-F♯m-F♯-E♭m-B-A♭m-E-C♯m-C♯-B♭m-B♭-Gm-E♭-Cm-A♭-Fm-F-Dm-D-Bm-G-Em −→ RPRPRLRL

20. C-Am-A-F♯m-D-Bm-B-A♭m-A♭-Fm-F-Dm-B♭-Gm-G-Em-E-C♯m-C♯-B♭m-F♯-E♭m-E♭-Cm −→ RPRLRPRP

21. C-Am-A-F♯m-D-Bm-B-A♭m-E-C♯m-C♯-B♭m-F♯-E♭m-E♭-Cm-A♭-Fm-F-Dm-B♭-Gm-G-Em −→ RPRL

22. C-Am-A-F♯m-D-Bm-G-Em-E-C♯m-C♯-B♭m-F♯-E♭m-B-A♭m-A♭-Fm-F-Dm-B♭-Gm-E♭-Cm −→ RPRLRLRP

23. C-Am-F-Fm-C♯-C♯m-A-F♯m-D-Dm-B♭-B♭m-F♯-E♭m-B-Bm-G-Gm-E♭-Cm-A♭-A♭m-E-Em −→ RLPLPL

24. C-Am-F-Dm-D-Bm-B-A♭m-A♭-Fm-C♯-B♭m-B♭-Gm-G-Em-E-C♯m-A-F♯m-F♯-E♭m-E♭-Cm −→ RLRPRPRP

25. C-Am-F-Dm-D-Bm-B-A♭m-E-C♯m-A-F♯m-F♯-E♭m-E♭-Cm-A♭-Fm-C♯-B♭m-B♭-Gm-G-Em −→ RLRPRPRL

26. C-Am-F-Dm-D-Bm-G-Em-E-C♯m-A-F♯m-F♯-E♭m-B-A♭m-A♭-Fm-C♯-B♭m-B♭-Gm-E♭-Cm −→ RLRP

27. C-Am-F-Dm-B♭-Gm-G-Em-E-C♯m-A-F♯m-D-Bm-B-A♭m-A♭-Fm-C♯-B♭m-F♯-E♭m-E♭-Cm −→ RLRLRPRP

28. C-Am-F-Dm-B♭-Gm-E♭-Cm-A♭-Fm-C♯-B♭m-F♯-E♭m-B-A♭m-E-C♯m-A-F♯m-D-Bm-G-Em −→ RL

Figure 18: The 28 Hamiltonian cycles with an internal periodicity.

It is worth noting that all other paths generated by the repetition of a couple of symmetric
operations, such as PR or LP, will create chord progressions that are shorter than 24. These two
non-Hamiltonian cycles as represented in figure 19.
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Figure 19: Two “zig-zag”-shaped harmonic cycles that encompass less than 24 chords: PR then LP, respectively
8- and 6-chord long.

The classification of chord progressions in the Tonnetz opens up a wide array of possibilities
in the study of musical harmonic organization. From an Oumupo point of view, it gives way to
new experiments in composition and writing, particularly in sub-genres that masquerade as “pop”
music but actually rely on formal, learned and constraint-based writing. Hamiltonian Songs are
now the subject of concerts and workshops; in 2016 a Hamiltonian Cabaret, proposed by Fabrice
Guedy, Moreno Andreatta and French singer-songwriter Polo, allowed students to dive into this
universe for an entire week. They created a song whose harmonic structure (see figure 20) is based
on one of the periodic Hamiltonian cycles listed above.
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Figure 20: The Hamiltonian cycle underlying a Ballade-Marabout written collectively by students of PSL (Paris
Sciences & Lettres). The cycle involved here is listed as #9 in figure 18; it is comprised of 4 periodic blocks of
6 chords each.

Putting a limited set of resources in the most efficient and rational order has long been an
obsession of all Ouxpo groups, to begin with Oulipo; one is reminded, for example, of the so-called
“Knight’s Tour” that Georges Perec used in Life, A User’s Manual (1978), envisioning his whole
“novels” as a 10×10 chessboard.

Hamiltonian graphs demonstrate, once more, the flexibility of music in comparison with words
and letters. Using all 24 triadic chords without any repetition (or, in the case of serial music, all
12 tones of a given series) seems far more achievable than, for example, the elusive heteropangram

which the Oulipo list has spent decades striving to achieve: a sentence of 26 letters where no letter
is used more than once. . . and that still makes sense.

Melodic generation and transformations

Beyond their apparent simplicity, some melodies can prove to be fairly complex objects as soon as
one attempts to describe them in rational or procedural terms. This has been one of Tom Johnson’s
fields of study long before he became a member of Oumupo, from his Rational melodies (1982) to
more recent works (Johnson, 1996).

Such experiments, needless to say, have existed for many centuries; to name but one, examples
of canons are found as early as the 14th century (and probably even predate musical palindromes,
which we mentioned previously). Numerous composers, including the well-known J.S. Bach, have
proven that a melody can act as a counterpoint to itself, when either shifted by a certain duration,
reversed (“crab canon”) or played simultaneously at different tempos. More recently, the study
of canons has gained new traction following Dan Tudor Vuza’s work on their rhythmic structures
(Vuza, 1991-1992). A relatively new field in musical composition, the so-called “tiling canon” is
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of particular interest to Oumupo, and with some help from the Oulipo list, we have even tried to
account for the possibility of multi-layered lyrics, whose meaning evolve when additional syllables
are interpolated between different voices.

Another example of structures that are both melodic and “potentially” polyphonic, is provided
by self-similar melodies, i.e., melodies that replicate themselves at different time scales (not
unlike fractals in the mathematical realm).
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Figure 21: The so-called “Alberti bass” happens to be a self-replicating loop: one can find the exact same melody
when playing only every third note, but this property is also verified with other ratios such as 5 or 7.

Concretely, the melody re-articulates itself by only playing one note out of every n notes (see
figure 21). In the most complex cases, n can change but the melody remains invariant. This property
has notably been explored by Tom Johnson in his 1998 octet La Vie Est Si Courte (figure 22).
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Figure 22: La Vie Est Si Courte, T. Johnson (1998).

The whole point of Ouxpo schools of thought is to restrict the number of possibilities, thereby
limiting the author’s reliance on arbitrary choices or, horrescimus referens, “inspiration”. Which
does not exonerate authors of any control nor responsibility: some choices still have to be made
(the least of which is indeed not which formula to choose in the first place); furthermore, musical
composition has always been a point of tension between artistic freedom and formal determinism.

With this in mind, one can notice that where forms such as canons and self-similarity define a
set of criteria that allow us to choose between multiple possible melodies (or even to adapt a pre-
existing melody by somehow making it fit, more or less artificially, inside the requisite frame), they
still do leave a lot of room for many “potential” solutions to the problem at hand. Hence the need
for another kind of tools: “generative” constraints, where one can let an algorithmic automaton
roam free and generate the whole melody.
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An example of such a process is as simple as it is fascinating: theDragon Curve, first described
by Martin Gardner in a 1967 issue of Scientific American (Gardner, 1967), has become a familiar
and popular entry into mathematical concepts. . . but few have applied it to the creation of a
musical score.

Figure 23: How to tuck your dragon.

We all know the simple game of folding a slip of paper n times in the same direction and then
unfolding the paper to see the final form. The complexity of the exercise increases according to the
number of folds (as demonstrated in figure 23). This “Dragon Curve” possesses several interesting
properties (fractal, self-similar, symmetric but non-periodic, etc.). The curve can also be read as
a series of melodic movements: for each “bump” in the paper, go up one note; for each dip in the
paper, go down by one note.

One can hardly fail to notice that for every extra fold, the melody becomes more and more
complex, but also more and more maze-like and mysterious — even more so if a specific, non-
standard scale has been chosen in the first place: for example a modal scale such as C D♯ E F G A♭
B, for a somewhat exotic effect. This goes to illustrate the tension stated above between freedom
and determinism: different composers will make different choices, and therefore get different musical
outcomes.
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This recreational game was the basis of a piece written by Tom Johnson in 1979 for a student
orchestra, Dragons in A. The simplicity of its procedural engine allows children to understand
the experiment, reproduce it and possibly make it their own, which highlights an essential aspect
of Oumupo’s pedagogical subtext: by demystifying musical composition and turning it into an
accessible game that is both logical and playful, we hope to reconcile the broadest, most diverse
audience with contemporary artistic creation.

The Dragon Curve has been happily adopted by several other Oumupo contributors in new,
unforeseen ways. Figure 24 shows an example where the curve has been given additional dimensions
by iterating 120-degree angles instead of right angles, and then running it through a Tonnetz .

Figure 24: How often do you get to see a dragon in a honeycomb?

Melodies and harmonies generated by the Dragon Curve are yet another case where music,
through its breathtaking and hypnotic beauty, allows one to “hear” mathematical constructs, and
to comprehend them in exciting new ways.
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A potential conclusion?

Starting with the assumption that music is much more flexible than literature with respect to the
combinatory potential of its own material, we have presented some of the ideas that Oumupo has
set out to explore in recent years5.

Although mathematics are an integral part of our activity (and the same could be said of any
musician), we have also made it a point to engage as much as possible with other languages, espe-
cially by exchanging with Ouxpo groups that apply similar tools and methods to other expressive
media — to begin with Oulipo, our historical common reference.

Much like Oulipo does not define itself as a literary movement, all Oumupo members pursue a
creative career of their own by taking inspiration from our collective reflection on constraint-based
writing, and in turn influence ongoing projects with their own research field and interests. Far from
being felt as limiting, these constraints are a source of freedom and artistic courage to all of us. To
paraphrase Georges Perec: “At the end of the day, I give myself constraints in order to be entirely
liberated.”
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Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 1845.

George Bergman, ‘A Number System with an Irrational Base’, Mathematics Magazine vol. 31, 1957,
pp. 98-110.

Martin Gardner, ‘Mathematical Games’, Scientific American vol. 216, 1967, p. 118.

Oulipo (col.), La Littérature potentielle Gallimard, Paris, 1973, pp. 19-27 and pp. 47-50.

Oulipo (col., edited by Marcel Bénabou and Paul Fournel), Anthologie de l’Oulipo, Gallimard, Paris,
2009, pp. 798-801.

Dan Tudor Vuza, ‘Supplementary Sets and Regular Complementary Unending Canons’, Perspectives
of New Music vol. 29 to 31, 1991-1992.

5Some of our theoretical work and musical examples may be found on Oumupo’s website, mostly in French:
http://oumupo.org.

19



Tom Johnson, Self-similar melodies, Editions 75, Paris, 1996.

Sergei Zagny, ‘Formula 1’ in Texts on Music, http://conceptualism.letov.ru/sergei-zagny/,
1995-2000, p. 18.

Moreno Andreatta and Gilles Baroin, ‘An Introduction on Formal and Computational Models in
Popular Music Analysis and Generation’ in Aesthetics and Neuroscience: Scientific and Artistic

Perspectives, Springer International Publishing, Cham, 2016, p. 257.

Moreno Andreatta, Martin Granger, Tom Johnson and Valentin Villenave, ‘L’Oumupo, entre
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